Optimizing ctDNA limits of detection for DLBCL during first line therapy

Jordan S. Goldstein, MD, MS, Won Seog Kim, MD, MPH, PhD, Sang Eun Yoon, Seok Jin Kim, MD, PhD, Mark Roschewski, MD, Jason Westin, MD, Ryan C Lynch, MD, Stefan K. Alig, MD, Sandra Close, PhD, Jacob J. Chabon, PhD, Davide Rossi, Wyndham H Wilson, MD, PhD, Maximilian Diehn, MD, PhD, Ash A. Alizadeh, MD, PhD and David M. Kurtz, MD, PhD

Background

- DLBCL 1L treatment consists of anthracycline-based chemoimmunotherapy
- Response criteria rely on PET/CTs, which lack sensitivity/specificity
 - Do not measure disease at molecular level
- Quantification and detection of ctDNA has been shown to be a prognostic biomarker before, during and after treatment

Kurtz et al., JCO 2018; Roschewski et al., ASH 2022

ctDNA assays have different limits of detection

- Several ctDNA assays have been studied in DLBCL with differing performance
 - ClonoSEQ (Adaptive)
 - CAPP-seq (Avenio)
 - PhasED-seq (Foresight)

Understanding limit of detection (LOD) in ctDNA

- Variable definitions used in literature
- Proposed definition: Lowest concentration of ctDNA that will be detected with 95% probability (LOD95)
 - Analytical sensitivity
 - Typically expressed as Variant Allele Fraction (VAF) or Tumor Fraction

Limit of Detection requires:

Number of mutations being detected

Background error rate of the assay

Amount of cfDNA in the blood sample

Lower LOD improves ability to detect disease

Aim

- Understand how analytical LOD impacts ctDNA MRD prognostic performance during 1L treatment
 - Do ultrasensitive assays improve prognostic performance?
 - Important to understand for trial design and clinical adoption

 We hypothesized that lower LOD can improve clinical sensitivity and predictive ability for PFS during and after treatment

Methods

- Used a pooled cohort with prospectively collected samples from 5 different cohorts
 - ctDNA assays were all performed using PhasED-seq
 - Cases were selected based on having:
 - High quality pre-treatment genotyping
 - Availability of surveillance samples at pre-treatment, C2, C3, C4, or EOT timepoints
- Assessed predictive ability for PFS of ctDNA MRD at various LOD for 1L timepoints
 - Simulated LOD to classify MRD +/- based on ctDNA VAFs
 - LODs ranged from 10⁻² through 10⁻⁶
- Assessed incorporation of MRD into novel endpoint, modified PFS (mPFS)

Cohort Details

Pooled cohort with prospectively collected samples from 5 different cohorts

Cohort	Trial	Anthracycline- based Regimen	Trial Therapy	Patients
NCI	NCT04002947	R-CHOP or DA-EPOCH-R	Acalabrutinib	30
UW	NCT04231877	DA-EPCH-R	Polatuzumab	17
MDACC	NCT02529852	CHOP	Lenalidomide Obinutuzumab	26
Samsung	Observational	R-CHOP-like	N/A	81
Kurtz et al, Nature Biotech 2021	NCT00398177 Observational	R-CHOP or DA-EPOCH-R	N/A	87

230 patients included 588 ctDNA plasma samples profiled

	Pre-tx	C2D1	C3D1	C4D1	EOT		
Positive	216	64	58	34	36		
Negative	3	21	55	36	109		
Total	219	85	113	70	145		
	Pre	C2D1	C3D1	C4D1	EOT		
	1% 99% 51% 49% 51% 75% MRD Detection Positive Negative						

Median follow-up = 22 months (IQR 10 - 29 months)

ctDNA VAF distributions during therapy

ctDNA VAF distributions during therapy

Improved analytical sensitivity leads to higher clinical sensitivity

Clinical Sensitivity

% of patients that progress within 24 months who have detectable ctDNA at a given LOD

 Generated time-dependent ROC curves for predicting PFS at 24 months

Lower LOD improves PFS prediction later in 1L therapy

AUROC

Predictive ability for PFS by MRD at a given LOD

Can ctDNA MRD accelerate clinical development in 1L DLBCL?

- Long timeline between trials improving 1L DLBCL outcomes
- Can time to trial readout be improved with novel surrogate endpoints?

Incorporating MRD into a proposed modified PFS (mPFS)

Definition:

PFS

- Relapse or progression of DLBCL at any time after treatment initiation
- Death from any cause
- Detectable residual ctDNA after completion of therapy
 - Requires assays with high sensitivity and specificity

mPFS shortens time to event while maintaining event classification

mPFS can shorten time to 25% target event rate by 12 months

mPFS with LOD 10⁻⁶ and PFS events highly concordant

138/145 cases (95%)

Conclusion

- Ultrasensitive MRD assays better predict PFS, particularly at later timepoints
 - Improved disease detection and outcome prediction
- Use of assays with lower LOD can maximize the efficacy of MRD risk-adapted therapeutic strategies
- Ultrasensitive MRD detection can be incorporated into surrogate endpoints, such as mPFS, to expedite drug development

Acknowledgements

Collaborators

- Won Seog Kim
- Sang Eun Yoon
- Seok Jin Kim
- Mark Roschewski
- Jason Westin
- Ryan Lynch
- Davide Rossi
- Wyndham Wilson

Kurtz lab

- George Duran
- Ruwan Gunaratne
- Julia Ransohoff
- Mia Carleton
- ChandanSanderra
- Hitomi Hosoya
- David Kurtz

- Alizadeh lab
 - Stefan Alig
 - Joe Schroers-Martin
 - Mark Hamilton
 - Emily Hamilton
 - Cedric Rossi
 - Takeshi Sugio
 - Jurik Mutter
 - Chih Long Liu
 - Mari Olsen
 - Feng Tian
 - Ash Alizadeh

Foresight Diagnostics

- Jake Chabon
- Sandra Close

