## Baseline prognostic factors do not predict end of treatment ctDNA MRD status and have limited impact on MRD prognostic performance in DLBCL

**Jordan S. Goldstein**<sup>1</sup>, Mark Roschewski<sup>2</sup>, Won Seog Kim<sup>3</sup>, Sang Eun Yoon<sup>3</sup>, Seok Jin Kim<sup>3</sup>, Jason Westin<sup>4</sup>, Ryan C. Lynch<sup>5</sup>, Stefan Alig<sup>1</sup>, Sandra Close<sup>6</sup>, Jake Chabon<sup>6</sup>, Davide Rossi<sup>7</sup>, Wyndham Wilson<sup>2</sup>, Max Diehn<sup>1</sup>, David M. Kurtz<sup>1,6</sup>, Ash A. Alizadeh<sup>1</sup>

<sup>1</sup> Stanford University, <sup>2</sup> National Cancer Institute, <sup>3</sup> Samsung Medical Center, <sup>4</sup> University of Texas MD Anderson, <sup>5</sup> Fred Hutchinson Cancer Center, <sup>6</sup> Foresight Diagnostics, <sup>7</sup> Oncology Institute of Southern Switzerland



# Diffuse Large B-cell Lymphoma (DLBCL)

- DLBCL is a biologically and clinically heterogeneous disease
- First-line treatment with anthracycline-based chemoimmunotherapy leads to varied outcomes



- Improving first-line outcomes by individualizing therapy has been limited in part by insufficient prognostic and disease monitoring tools
  - Novel prognostic tools are being developed
  - Understanding their relationship may be key to optimizing outcomes



## Baseline prognostic tools in DLBCL

#### **Clinical Factors**

IPIAge > 60ECOG PS > 1Stage > 2Extranodal sitesLDH > ULN



#### **Biological Factors**





Shipp et al., NEJM 1993; Alizadeh et al., Nature 2000

# ctDNA is an emerging biomarker in DLBCL



Pre-treatment ctDNA level





Major Molecular Response (MMR) 2.5-log fold decrease from C1 to C3



Kurtz et al., JCO 2018

# ctDNA for EOT MRD detection in DLBCL





# Motivation & Hypothesis

- ctDNA MRD assays have potential utility for DLBCL management
  - Starting to be adapted clinically
- Relationship of known prognostic factors with EOT MRD is unexplored
- Understanding the relationship between prognostic factors and MRD assay performance can optimize clinical trial design and practice
- We hypothesized that baseline factors are associated with EOT MRD status and impact ctDNA MRD assay performance



### Methods

| Used a <b>pooled cohort of DLBCL patients</b><br>undergoing 1L therapy with prospectively<br>collected samples | <ul> <li>ctDNA analyzed using PhasED-seq</li> <li>Treated with anthracycline-based chemotherapy</li> <li>Cases were selected based on having:</li> <li>High quality pre-treatment genotyping</li> <li>Available EOT plasma samples</li> </ul> |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|              |                                                                                                                    |   | Variables assessed: |   |                   |
|--------------|--------------------------------------------------------------------------------------------------------------------|---|---------------------|---|-------------------|
| $\checkmark$ | Assessed association of baseline and<br>interim clinical and biologic factors with<br>EOT MRD status by PhasED-seq | • | IPI                 | • | COO Subtype       |
|              |                                                                                                                    | • | Stage               | • | Pre-treatment VAF |
|              |                                                                                                                    | • | Age                 | • | Interim PET       |
|              | , , , , , , , , , , , , , , , , , , ,                                                                              | • | Sex                 | • | EMR & MMR         |



- Stratified KM curves
- Time-dependent ROC curves

## Cohort

 Pooled meta-cohort of 145 patients with prospectively collected samples from 5 different cohorts

| Cohort                                      | Trial                        | Anthracycline-based<br>Regimen | Trial Therapy                | Patients |
|---------------------------------------------|------------------------------|--------------------------------|------------------------------|----------|
| NCI<br>(Roschewski et al., ASH 2023)        | NCT04002947                  | R-CHOP or<br>DA-EPOCH-R        | Acalabrutinib                | 27       |
| UW<br>(Lynch et al., Blood Adv 2023)        | NCT04231877                  | DA-EPCH-R                      | Polatuzumab                  | 17       |
| MDACC<br>(Cherng et al., Blood Adv 2023)    | NCT02529852                  | CHOP                           | Lenalidomide<br>Obinutuzumab | 18       |
| Samsung<br>(Sworder et al., ASH 2023)       | Observational                | R-CHOP-like                    | N/A                          | 64       |
| Stanford<br>(Kurtz et al, Nat Biotech 2021) | NCT00398177<br>Observational | R-CHOP or<br>DA-EPOCH-R        | N/A                          | 19       |



## **Baseline Characteristics**

| Characteristics     | Total Patients (n = 145) |  |  |
|---------------------|--------------------------|--|--|
| IPI                 |                          |  |  |
| Low (0-1)           | 28 (21%)                 |  |  |
| Intermediate (2-3)  | 82 (61%)                 |  |  |
| High (4-5)          | 25 (19%)                 |  |  |
| Stage               |                          |  |  |
| Early (I & II)      | 42 (29%)                 |  |  |
| Advanced (III & IV) | 102 (71%)                |  |  |
| Age                 |                          |  |  |
| ≤ 60                | 79 (54%)                 |  |  |
| > 60                | 66 (46%)                 |  |  |
| COO (IHC)           |                          |  |  |
| Non-GCB             | 54 (44%)                 |  |  |
| GCB                 | 68 (56%)                 |  |  |



### IPI does not strongly predict EOT MRD status



# Stage, but not sex or age, is associated with EOT MRD status



| Statistic                 | Stage         | Age            | Sex             |
|---------------------------|---------------|----------------|-----------------|
| OR (95% CI)               | 4.5 (1.6, 16) | 0.8 (0.4, 1.7) | 0.75 (0.4, 1.6) |
| P-value (X <sup>2</sup> ) | 0.01 (6.8)    | 0.7 (0.1)      | 0.6 (0.3)       |

# ctDNA burden predicts EOT MRD status, while COO subtype does not





### Interim assessments are associated with EOT MRD



# EOT MRD is highly prognostic regardless of IPI



MEDICINE

# EOT MRD by PhasED-seq predicts PFS regardless of IPI



### Conclusions

- IPI is not strongly associated with EOT MRD status
- Stage and pre-treatment ctDNA are associated with EOT MRD status
   Interim assessments are associated with MRD status
- PhasED-seq maintains high performance for predicting PFS regardless of IPI
   Risk-adapted therapies and disease monitoring may be independent of other clinical factors
- Important implications for trial design and eventual clinical practice



# Acknowledgements

#### **Mentors**

- Ash Alizadeh
- David Kurtz

#### **Collaborators**

- Mark Roschewski
- Won Seog Kim
- Sang Eun Yoon
- Seok Jin Kim
- Jason Westin
- Ryan Lynch
- Stefan Alig
- Sandra Close
- Jake Chabon
- Davide Rossi
- Wyndham Wilson
- Max Diehn



### **Research Support**





